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Abstract-A closed-form model for the computation of temperature distribution in an infinitely extended 
isotropic body with Gamma-type moving point-heat sources is discussed. The temperature solutions for 
these moving sources are discussed for time-dependent sources of the forms: (i) o,(l) = 0, exp (-i.r). 
and (ii) &(I) = &(//r*) exp (-II). where E. is a real number and (* characterizes the limiting time. The 
reduced (or dimensionless) temperature solutions are presented in terms of the generalized representation 
of an incomplete Gamma function I,(b. s), which is also expressed by complementary error functions. It 
is also demonstrated that the present analysis covers the classical temperature solution of a constant 

strength source under quasi-steady-state situations. 

1. INTRODUCTION 

THE HEAT released by a moving source whose extent 
can be neglected as compared with the dimensions of 
the surroundings of interest, is important for analyz- 
ing several technological processes. These transient 
heat conduction problems originating from a moving 
source of heat may be due to (i) sliding friction, (ii) 
machining, and (iii) numerous metal-treating opera- 
tions such as welding, casting, quenching, and flame- 
hardening. It should be noted that these problems are 
typically grouped in the following three categories: 
(a) the moving point-heat source; (b) the moving line- 
heat source; and (c) the moving plane-heat source. 

Spraragen and Claussen [l] have reviewed the early 
approximate theory of moving heat sources, while 
somewhat exact formulation is due to Rosenthal [2] 
which is also discussed in Handbook of Heat Transfer 
Fundamentals [3]. According to Rosenthal’s theory, 
an excitation heat source moves through a fixed region 
(I, y, z) with constant unidirectional velocity u (par- 
allel to x), and the temperature-response function 
T(.u, I’. z, t) must satisfy the transient heat conduction 
equation. He has demonstrated that a solution for ‘T 
is simplified by transforming to a moving coordi- 
nate r whose origin coincides with the heat source 
and moves at the source velocity u. This scheme has 
also been exploited by Carslaw and Jaeger [4] and 
Grigull and Sandner [5] to discuss quasi-steady-state 
solution of moving point-heat sources of constant 
strength. The quasi-steady-state solution of a moving 
Gaussian-type source has been performed by 
Cline and Anthony [6] and Mazumder and Steen [7]. 

It should be noted that the closed-form solutions 
for the constant as well as the general, time-dependent, 
moving heat sources in an infinite solid are not avail- 
able in the literature [l-7]. The objective of this paper 
is to present closed-form solutions for the time- 
dependent moving Gamma-type point-heat sources. 

2. MATHEMATICAL FORMULATION 

We consider a time-dependent point heat source 
in a homogeneous and isotropic body of an infinite 
extension, moving with a velocity u along the s direc- 
tion. The solution of transient, heat conduction equa- 
tion in the infinite solid due to the point-heat source 
of strength g(f) may be obtained by adding the con- 
tributions of an infinite number of small instant- 
aneous sources placed one behind the other at in- 
finitely small intervals of time, along the .X direction. 
If the quantity of heat released from time I = T 
to r = rfdr is g(7) dr, then the temperature field 
formed about a moving point heat source to which we 
have attached the origin of the rectangular coordinate 
system is given by [4, 51 

1 
T(.r, ~3. z, t) = 

5 
I Q(7) (4na)3’2pCp 0 

[.x-u(t-7)]2+J’2+z~ 1 dr 
4a(t-7) (t-7)3’? (1) 

The abbreviation r’ = r’+j~‘+;’ and the sub- 
stitution 

(#)L 
4a(r-7) ’ 

and hence 
4u dr$ dr 

J 
i li? = p 
r- 4 (f-7) ‘- 

allows us to reduce equation (1) to the form 
e(“r/2aJ x 

T(x, r, f) = v 
s 4n”-kr 2 Q(f -r2/4a$) 
lr l4ll) 

’ $. 1 (2) 

3. SOME CLOSED-FORM SOLUTIONS 

In this section, we use equation (2) to discuss the 
temperature field formed about moving, Gamma- 
type point-heat sources of the following forms : 
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NOMENCLATURE 

CP specific heat at constant pressure 
[KJ kg- ’ K ‘1 

Fo Fourier number, at/s’ 
I generalized Gamma function 
k thermal conductivity [W m ’ K - ‘1 
i, heat rate [W] 
I distance from the heat source [m] 
1 time [s] 
T temperature [K] 
u source velocity [m see ‘1 
k reduced velocity. III/~.. 

Greek symbols 
thermal diffusivity, k/PC,, [m’ s- ‘1 
dimensionless parameter, V ‘/4Fo - T 

I- Gamma function 
0 reduced (or dimensionless) temperature 
P density [kg m - ‘1 
5 reduced time constant, i,/. 

Subscripts 
I exponential-type, moving-point source 
I I quasi-steady-state constant source 
2 pulse-type, moving-point source 
21 linearly increasing point source 
22 quasi-steady-state linear source. 

Superscript 
* limiting value. 

Q, = Q,, exp (-if). and 

Q2 = Q”(f/f*) exp (-i.f), 

(3) 

(4) 

v = lit/r., 

Fo = rtlr’, 

(10) 

(11) 

where I* denotes a time-interval that characterizes the 
moving source independently from the thermo- 
physical properties of the medium, and 2 is any real 
number. 

3. I. The e.uponentiul-type point-heat source 
We note that an exponential-type heat source given 

by equation (3) when substituted in equation (2), 
results in 

x & Q,- ’ d& (5) 
0 I 

which can easily be simplified by using equation (A.l) 
as 

xI,,2[(;)l(&) -At,(&)]. (6) 

It is convenient to introduce the above solution in the 
dimensionless form as 

0, = l,:z(B, 1/4Fo), (7) 

where 

8 
I 

= 4d”krT, (x, r, t) 
elrr/2zli), (t) ’ 

fl = V’/4Fo-T, (9) 

T = it. (12) 

We note that equation (7) can be expressed in terms 
of complementary error function by using equation 
(A.3) as 

Ji 0 I = 2 [exp ( - J/UFO) Erfc (I /2,/Fo - p) 

+exp(JP/Fo) Erfc(I/2&+B)]. (13) 

For d = 0, we note that equation (3) represents a 
constant strength heat source. The substitution of this 
value of i in equations (9) (12) yields 

b = /30 = V’I4Fo. (14) 

It is of interest to recover the temperature solution 
of a constant strength source under quasi-steady-state 
situation, i.e. I + a. This can be obtained from equa- 
tion (13) when /I = j?,, + co and l/4Fo + 0. Using 
equations (A.5)-(A.7) we get 

o,, =n ’ ’ exp (-@). (15) 

On using equations (8), (IO), (I I) and (14) we can 
simplify equation (I 5) to give 

T(s,v,z) =& exp[-“tr.Y)], (16) 

which is the same steady-state solution as that 
reported in Carslaw and Jaeger [4] and Grigull and 
Sandner [5]. 

3.2. The pulse-type point-heal source 
We note that a pulse-type heat source given by 

equation (4), when substituted in equation (2), results 
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X 
s 

’ [exp(-~-8/4Fo~)~“‘~’ 
I a/;0 

-(1/4Fo)exp(-Q,-/1/4Fo(b)4b~“~‘] (17) 

which can easily be integrated by using equation (A. I) 
as 

0, = [I, ?(p, l/4F0)-(1/4Fo)l~, ?(p. 1/4Fo)], (18) 

where 
47r’ ‘krT,(s. I’, t) 

02 = yG”-i”i)>(,) 

and p, Fo are the same as that described earlier in 
equations (9) and (11). 

It should be noted that the dimensionless (or 
reduced) temperature expression given by equation 
(18) can easily be expressed in terms of the (well- 
known) complementary error function by using equa- 
tions (A.3)-(A.4) as 

Jr O2 = I[exp(-J/I)!Fo)Erfc(l/2,/Fo-/1) 

+ exp (,/fi/Fo) Erfc ( I /2JFo + I)] 

2JFO 
- P[exp(-,//I/Fo)Erfc(l/2JFo-[j) 

JP 
-exp (,//l/Fe) Erfc (1/2JFo +/I)]. (19) 

We note that for i. = 0. equation (4) represents 

a point-source of linearly increasing strength. The 
substitution of this value of i. in equation (18) yields 

(20) 

which is the same as that given by equation (19). with 
B = so. 

The quasi-steady-state representation oT equation 
(20) by using equations (A.S)-(A.6) can be expressed 
i iS 

(22) 

The graphical representation of equations (I 3) and 
(19) is shown in Figs. l-3, respectively. In Figs. I and 
2, the reduced temperature 0 is plotted vs the dimen- 
sionless parameter 8. for various values of the rcduccd 
time parameter Fo. We note that the reduced tem- 
perature plots are represented by characteristic Gaus- 
sian-type curves. It can be seen rrom these figures that 
for large values of p. the reduced temperature values 
approach the zero value. It should. however. bc noted 
that the (I values for an exponential-type heat source 
(refer to Fig. 1) are relatively larger compared to the 
pulse-type (refer to Fig. 2), particularly at low values 
of the dimensionless parameter 8. For example. at 
/I = I .OO and Fo = 5.00, the reduced temperatures 0,. 
0, are I. 1 and 0.90, respectively. 

l.LO //l/l I I /llllli i I l”TI (jl ’ 

6 0.60 

lE’-01 2 3 i .1i+oo 2 3 L lE+Ol 2 3It lE+02 

p = v*/4 Fo -T- 

FIG. I. Reduced temperature vs the dimensionless parameter from a moving point-heat source of an 
exponential-type strength of the form o,, exp ( -),I). 
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Fo= (1 t/r' = 1.00 

q 2.oo m / ! 1 I ! /Ill 
1.20 

1 / / / / j / i 

t 

0.80 

N 0.60 m 

0.40 

0.20 

0.00 I 

lE-01 2 3 4 lE+OO 2 3 4 lE+Ol 2 3 4 lE+OZ 

p = V*/LFo-r- 

FIG. 2. Reduced temperature vs the dimensionless parameter from a moving point-heat source of a pulse- 
type strength of the form Q”(r/f*) exp (-%r). 

The dimensionless parameter p, which is defined by equation (12) may be defined as the reduced time 
equation (9) is presented in Fig. 3. In this figure, parameter. 
(b+r) is plotted vs the reduced velocity k’, for various 
values of the reduced time parameter. The (j + 7) plots 4. CONCLUDING REMARKS 

shown in this figure are represented by parabolic-type The analytical solutions of temperature dis- 
curves. It should be noted that the 7 value given by tributions due to time-dependent moving point-heat 

Fo = at/rl= 1.00 - Fo = at/rl= 1.00 - 

0 
lE+OO 2 3 4 5 61 1EiOl 

V=ut/r- 
FIG. 3. The dimensionless parameter v+r) vs the reduced velocity. 
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sources are discussed for an extended, homogeneous, 
and the isotropic medium. The strength of moving 
heat sources considered in this paper is exponential- 
and pulse-type. All the closed-form temperature 
solutions are presented in terms of the reduced 
temperature (0) as a function of the dimensionless 
parameter (/I) and the reduced time parameter (Fo). 
Although, the quasi-steady-state solutions for the 
constant strength source are discussed in Carslaw and 
Jaeger [4] and Grigull and Sandner [5], the closed- 
form transient solutions for the moving point-heat 
source of constant strength are not available in the 
literature. The present analysis provides the closed- 
form solutions for the constant as well as the Gamma- 
type moving point-heat sources. 

It should be noted that the time-dependent, con- 
tinuously operating moving heat source of the form 
&[a+b(r/f*)] exp (-It) may be considered as the 
most general Gamma-type heat source, in which equa- 
tions (3) and (4) may be recovered by specializing 
the parameters a and b. The reduced temperature 
solutions due to such type of a heat source can now 
be expressed as 

0, = UO, +&I?. (23) 
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APPENDIX 

It should be noted that the integral occurring in equations 
(5) and (17) can be represented as [8] 

I,(b, s) = 
s 

cc 
,‘- 1 e-,-,h t d,, (A.11 I 

which is considered as a generalized representation of an 
incomplete Gamma function [9]. e.g. the above integral at 
h = 0 reduces to 

J: 

x 
1,(0,x) = T(a.s) = I’- ’ em’ dr. (A.3 

In general, equation (A. I) belongs to the family of Weyl 
(fractional) integrals. which can be integrated for certain 
values of a to give the following results [9] 
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I- ,,>(b,s) = Jn - [exp ( - 26) Erfc (J - &) 
2Jbs 

-exp(2&)Erfc(&+&)]. (A.4) 
The asymptotic value of I,(b, s) when s + 0 can be written 
as 

I,(b,.u) = 2(bx)‘f’K,(2Jh.r)-.Y em‘-“, s -+ 0, (A.5) 
where K, is the modified Bessel function of the second kind. 

Letting s + 0 and b + m in equation (A.5), we get 

I,(b, s) = 2(bs)“‘K,(2fi) ; x+0 andb-+a 

(A.@ 
where 

(A.7) 


